280 research outputs found

    Live Migration in Emerging Cloud Paradigms

    Get PDF
    The elastic provisioning of resources and the capability to adapt to changing resource demand and environmental conditions on-the-fly are, probably, key success factors of cloud computing. Live migration of virtual resources is of pivotal importance in achieving such key properties. However, the ability to effectively and efficiently determine which resource to be migrated and where, by satisfying proper objectives and constraints, remains a research challenge. The existing literature is generally based on metaheuristics running a central resolver. Such an approach is not suitable because it only considers the quality-of-service aspect during the decision-making performance while ignoring the regulatory challenges. This column highlights the regulatory challenges associated with the cross-border dataflow implication of migration and stresses the need to adopt alternative decision approaches.postprin

    A novel measurement method for accurate heat accounting in historical buildings

    Get PDF
    Nowadays, two different heat accounting methods are available: the direct method, based on heat meters, and the indirect one, based on heat cost allocators. Unfortunately, in existing buildings, due to the plant configuration, heat meters are often technically unfeasible or not cost efficient, whereas heat cost allocators can be easily installed in almost all conditions. At the same time, the indirect method relies on a high number of interconnected devices with installation and operative conditions often variable within the same building and influencing the on-field metrological performances. In this paper, the authors propose a novel "hybrid" method for accurate heat accounting combining the advantages of indirect method with the higher accuracy typical of direct methods. The proposed method has been experimented at INRIM, the primary metrology institute in Italy, assessing the on-field performance in a virtual eight-apartments building. The experimental results show that the proposed method always presents improved accuracy. (C) 2020 Elsevier Ltd. All rights reserved

    Potential for building Façade-integrated solar thermal collectors in a highly urbanized context

    Get PDF
    Development of technologies, materials, support systems, and coatings has made the integration of solar thermal systems into the building envelope increasingly possible. Solar thermal collectors can either be directly integrated, substituting conventional roof or façade covering materials, or constitute independent devices added to a roof or façade structure. Aimed at estimating the real effectiveness of building-integrated solar systems for domestic heat water (DHW) production or for heating integration, when horizontal or inclined pitches on buildings are not applicable, the authors analyze a case study with different scenarios, taking into account the issues connected to a highly urbanized context in the Mediterranean climate. A GIS model was used for estimating the energy balance, while the real producibility of the simulated systems was calculated by a dynamic hourly simulation model, realized according to ISO 52016. The savings in terms of primary energy needs obtained by installing solar thermal systems on the facade are presented, and the differences between the cases in which the system is used for DHW production only and for space heating too are distinguished and discussed. The evaluated potential is quantified in the absence of roof collectors, despite their high potential in the Mediterranean region, in order to better appreciate the effects induced by integrated facade systems

    Individual metering and submetering for cooling application

    Get PDF
    In 2012 the Energy Efficiency Directive (EED) has set mandatory installation of individual metering and submetering systems for accounting thermal energy consumption in buildings where centralized heating/cooling sources are present, when technically feasible and cost efficient. As a consequence, direct thermal energy meters or indirect heat accounting systems have spread widely in residential buildings, for metering and sub-metering in space heating applications. On the other hand, individual metering of thermal energy in space cooling is a difficult task, due to the very different types of cooling systems and to the lack of technical and legal metrology regulation. In this paper possible solutions available for direct metering and submetering of different types of centralized cooling systems are discussed. Indeed, for direct metering application, the cooling fluid flow metering is a particularly crucial issue due to small pipe diameters and different fluid properties. Thus, the authors carried out an experimental comparison between a Coriolis flow-meter and an ultrasonic clamp-on flow-meter in the cooling fluid circuit of a direct expansion system. Tests have been performed at different operative temperature differences between flow and return, showing relative errors within ± 10%

    Influence of Installation Conditions on Heating Bodies Thermal Output: Preliminary Experimental Results☆

    Get PDF
    Abstract Heating bodies are thermodynamic systems whose heat output is strongly dependent on boundary conditions and in about a century several attempts have been made for its experimental determination. To this aim, at the beginning of 60s, in Europe different national standards were adopted (e.g. in 1967 in Italy the UNI 6514/1967). At European level, the EN 442-1:2014 and EN 442-2:2014 allows the heating body heat output estimation with an expanded uncertainty lower than 1% and they are now accepted in various international markets. The EN 442 also allows heat output calculation in operating conditions different from standard ones by employing theoretical-experimental correlations that, by their nature, are not able to include any possible actual operating condition. In fact, in actual operating conditions the heating body heat output depends on several factors, among which: i) installation position with respect to the wall and the floor; ii) presence grid/shelf/niche or an obstruction caused by curtains on the heating body; iii) thermo-fluid-dynamic condition variations (inlet flow rate and temperature); iv) hydraulic connections. Radiators represent the most spread heating body (installed since the end of '800) and in the last decades different radiators typologies have been proposed on the market, characterized by different materials, sizes, shapes, etc. In the present paper the authors present the preliminary result of an experimental campaign on field for the heat output measurement of different radiators typologies (cast iron, aluminum) as a function of different installation and operating conditions. The influence on the heating body performance and the associate technical-economical consequences in terms of heat cost allocation accuracy have been investigated

    Estimating the smart readiness indicator in the italian residential building stock in different scenarios

    Get PDF
    The Energy Performance of Buildings Directive 2018/844/EU introduced the smart readiness indicator (SRI) to provide a framework to evaluate and promote building smartness in Europe. In order to establish a methodological framework for the SRI calculation, two technical studies were launched, at the end of which a consolidated methodology to calculate the SRI of a building basing on a flexible and modular multicriteria assessment has been proposed. In this paper the authors applied the above-mentioned methodology to estimate the SRI of the Italian residential building stock in different scenarios. To this end, eight “smart building typologies”, representative of the Italian residential building stock, have been identified. For each smart building typology, the SRI was calculated in three scenarios: (a) base scenario (building stock as it is); (b) an “energy scenario” (simple energy retrofit) and (c) a “smart energy scenario” (energy retrofit from a smart perspective). It was therefore possible to estimate a national average SRI value of 5.0%, 15.7%, and 27.5% in the three above defined scenarios, respectively

    Factors affecting the development of Bovine Respiratory Disease: a cross-sectional study in beef steers shipped from France to Italy

    Get PDF
    Bovine respiratory disease (BRD) is a complex, multifactorial syndrome and one of the major welfare and economical concerns for the cattle industry. This 1-year cross-sectional study was aimed at documenting the prevalence of BRD-related pathogens and clinical signs before and after a long journey and at identifying possible predisposition factors. Male Limousine beef steers (n = 169) traveling from France to Italy were health checked and sampled with Deep Nasopharyngeal Swabs (DNS) at loading (T0) and 4 days after arrival (T1). Real-time quantitative PCR was used to quantify the presence of bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine adenovirus (BAdV), bovine parainfluenza virus 3 (BPIV-3), Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida. Weather conditions at departure and arrival were recorded, and the travel conditions were taken from the travel documentation. At T0, even if no animals displayed clinical signs, some of them were already positive for one or more pathogens. At T1, the number of animals displaying clinical signs and positive for BCoV, BAdV, BRSV, H. somni, M. haemolytica, M. bovis, and P. multocida increased dramatically (p < 0.001). Transport also significantly increased co-infection passing from 16.0% at T0 to 82.8% at T1 (p < 0.001). An extra stop during the journey seemed to favor BRSV, M. haemolytica, and P. multocida (p < 0.05). Weather conditions, in particular sudden climate changes from departure to arrival and daily temperature variance, were found to be predisposing factors for many of the pathogens. The farm of arrival also played a role for BRSV, BAdV, and H. somni (p < 0.05). BCoV increased dramatically, but no associations were found confirming that it spreads easily during transport phases. Our findings increased our understanding of factors increasing the likelihood of BRD-related pathogens shedding and can be useful to minimize the incidence of BRD and to implement animal transport regulations

    Transactional migration of inhomogeneous composite cloud applications

    Get PDF
    For various motives such as routing around scheduled downtimes or escaping price surges, operations engineers of cloud applications are occasionally conducting zero-downtime live migrations. For monolithic virtual machine-based applications, this process has been studied extensively. In contrast, for composite microservice applications new challenges arise due to the need for a transactional migration of all constituent microservice implementations such as platform-specific light-weight containers and volumes. This paper outlines the challenges in the general heterogeneous case and solves them partially for a specialised inhomogeneous case based on the OpenShift and Kubernetes application models. Specifically, the paper describes our contributions in terms of tangible application models, tool designs, and migration evaluation. From the results, we reason about possible solutions for the general heterogeneous case
    • 

    corecore